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Abstract

We consider the geometrical aspects of the Krichever map in the context of Jacobian super KP
hierarchy. We use the representation of the hierarchy based on the Faa di Bruno recursion relations,
considered as the cocycle condition for the natural double complex associated with the deformations
of super Krichever data. Our approach is based on the construction of the universal super divisor
(of degreeg), and a local universal family of geometric data which give the map into the Super
Grassmannian. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we study the geometrical setting of the super Krichever map in analogy to
the standard non-graded case [5]. This map is an essential tool in the analysis of the algebraic
geometric solutions to integrable systems of soliton type (see, e.g., [10]). Its super extension
has already been introduced in [11], and studied in [1,12]. The essential difference in our
approach is that we have taken full benefit of the so-called Faa di Bruno approach to the KP
theory [4] and its super generalization [6], where the equivalence of this approach to the
standard differential-operator picture of the Jacobian SKP [9,12] is proved. It turns out, as
in the classical case, that the Faa di Bruno recursion relation is (related to) the first cocycle
condition for the hypercohomology group which controls the infinitesimal deformations of
the spectral super line bundle together with its meromorphic sections.

The basic advantage of this approach is that it is directly related to the (Super)Grassman-
nian description of the hierarchy, and has an intrinsic geometrical meaning. In particular,
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we can avoid the difficult initial step of the introduction of the Baker—Akhiezer function, go
on with the natural development of the geometrical construction, and recover the existence
of the BA function at the end.

As in the classical case, the important technical tool is to construct a local universal
deformation of the initial super line bundle, since the cocycle condition comes by consi-
dering point-wise the germ of such a deformation as a vector field on the base. This is a
difficult point because we lack a sound definition of the Super Jacobian of a super curve
C. Indeed looking at the transition functions, one would say that this is the cohomology
group H(C, Og), whereOy is the sheaf of units in the even part of the structure sheaf.
Unfortunately, this set-up is not fully satisfactory because there are no naturally defined odd
deformation directions. The way out we present in this paper is to work with the moduli
spaceSgC~ of effective superdivisors of degregor, which is the same, with thg-fold
symmetric product [3] of the dual curve [1,2]. This is a supervariety with enough odd
parameters over which we have a universal effective divisor, and we expect that, as in the
classical case, the “Super Jacobian” will appear as a quotieﬂgﬁof

The scheme of the paper is as follows: in Section 2, we briefly recall the Faa di Bruno
recursion relations, their connection with the JSKP hierarchy, and with the Krichever map,
referring to [6] for more details. In Section 3, we give a brefumeof the tools from defor-
mation theory needed in the sequel. In Section 4, we construct the symmetric powers of the
(dual) supercurve as a supervariety, and we prove the existence of a universal superdivisor.
In Section 5, we exploit the cohomological meaning of the Faa di Bruno recursion relations
to insure that it gives a flow on the space of super Krichever data and, through the super
Krichever map, the JSKP flow on the algebraic geometrical loci in the Super Grassmannian.
Finally, in Appendix A, we recall some basic definitions of the theory of super curves used
in the paper.

2. The Jacobian super KP hierarchy

Let us start by fixing some notations. We denotebg generic Grassmann algebra over
C, B := A[[x, ¢]] is the A-algebra of formal power series in the variablegeven) and
¢ (odd) andD := 9, + ¢d,. The ring of formal super pseudo-differential operators over
X := SpecB) is the space of formal series

L= Zuan_j, uj € B
j=0

endowed with the product induced by the super Leibniz rule

Dk = _1f(k—j)[k:| GDph-i
f=Y (=1 e

j=0

where f denotes the parity of, f) = D/ (f) and[l; ] is the super binomial coefficient
[8].
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Mulase and Rabin [9,12] defined the Jacobian super KP hierarchy as the following set of
evolutionary equations for the even dressing opersites 1 + Zj>0st*f:

By S 1= —(SD*SY) .5 = —(Sks™Y).S,
By sS 1= —(S(D?*~t — ¢D¥*)sY) 5 = — (53,0515 s,

whereL_ is the pure pseudo-differential part bfand the time; has parityk mod 2. One

of the features which distinguishes this hierarchy from that of Manin and Radul [8] is that
for algebraic geometric solutions the equations describe super-commuting linear flows on
the super Jacobian of a super curve. One way to approach this issue is to consider another
description of the hierarchy, using the super Faa di Bruno polynomials instead of super
pseudo-differential operators. We refer to [6] for a detailed account and we only sketch
what is relevant to the present discussion. Vet A((z™1) ® A((z™1)) - 6 be the algebra

of formal Laurent series in the even variabte' and the odd variable, let V. := A[z, 6],

V_:= A[[z71,60]] -z 1 and letVz := V ® 4 B. The basic object of this formulation is the

odd Faa di Bruno generator

h(z,0;x,0) =60 +9z+0zY e Vg,

where, abusing notations, we writg01) for an element of_ ® 4 B. Out ofh we construct
iteratively the Faa di Bruno polynomials by

hO =1, A D = (D + HA®, Kk eN, (2.1)

and setWp = spar};{fz(") : k € N}. Itis then easy to show that there exists a unique basis
{H® k e N} of Wg, whose elements (called “super currents”) have the form

AZFP = grzk 4 0z7h 2.2)
with p = 0, 1, in terms of which the equations of the Jacobian super KP hierarchy become

oh _ (—D*DA®. (2.3)
ot

SinceH® = 1@, we haved,, = 9,.

The study of these equations finds its most appropriate and natural setting in the concept of
super universal Grassmannian S@lefined as follows [1,13]. The filtration- C V;_1 C
V; C Vjz1 C--- C V,whereV; = z/T1V_, makesV and itsA-submoduleV,. complete
topological spaces and S@r= SGr, (V, V,) is the set of closed fred-submoduleV
of V which are compatible witlv in the sense that the restrictiary of the projection
7V — V, to W is a Fredholm operator, i.e., its kernel (respectively, cokernel) is a
A-submodule (respectively, a quotieitmodule) of a finite rank freet-module. As in the
commutative setting, SGris the disjoint union of the denumerable set of its components
SG&) labelled by the indexy of 7y ; moreover each component acquires a structure of
super scheme by means of projective limits. By definition, the spigespanned by the
H®s gives rise to a moving point of SGrand the super currents evolve under JSKP along
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the equations of a dynamical system, si@er central systefs], which gives vector fields
on the Grassmannian. In particular one has that

9, H® = (=19, D, (2.4)

Whichever approach one takes, the link with algebraic geometric solutions is provided
by the super Krichever map [11] which associates a p#inbf SGrs to the datum
(C.D,(z1,0), L,n) of
1. aA-super-curv&€ = (C, O¢) (see Appendix A),
an irreducible divisoD onC whose reduced support is a smooth peigf € C,
local coordinates! andé in a neighbourhood/p > peo,
an invertible sheaf onC and
. alocal trivializatiory of £ overUy.

Let L(coD) = lim,,_. » £(nD) be the sheaf of sections gfwith at most an arbitrary pole
atD, thenW = n(H®(C, L(coD))). Bergvelt and Rabin [1] have shown that themodule
HO(C, L(ocoD)) is free, soW belongs indeed to SGr We can invert the Krichever map on
its image as explained in [11]; in particular, the ring of function§ which are holomorphic
on the open subséf; := C — {pso} is the subalgebraly, c V of functions f such that
f-W c W. Ay is obviously graded.
As a consequence of Egs. (2.1) and (2.3), we recover the same picture in our approach.

aAw N

Proposition 2.1 (Isospectrality).Let i(x, ¢, t) be a solution of the Jacobian super KP
hierarchy and denote by, the space generated by the corresponding super currents
H® (x, 9, t). For any specialization(xo, ¢o, to) of (x, ¢, 1) let Aug.goto) C V be the
A-algebra of functions that map by multiplicatid¥r, into itself. ThenA, 4, t,) does not
depend or(xo, ¢o, to)-

We limit ourselves to sketch the proof. We have to show that i€ Ay e0.t0), then
fWr C Wr. Since 1le Wy, this is equivalent to showing that such grnis in W, because
f supercommutes witlv + k. Since 1€ Wy, as well, we can write

=Y ciHD,
whereH() denote the specialization &) att = to. We have to prove that, calling
f=3 e,

actually f' = f,i.e.,Y"c;HY is independent of the timeg.
The identity

foD+ ik =Y (~pUUrDRES [’; ] (D + k=i O
j=0

shows thaD* f' € WrVk so thatD f’ = 0. Similarly, one proves thak, f' = 0Vk.
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3. Deformation of super line bundles and of their sections

The meaning ofsospectrality(Proposition 2.1) is that when the solution is of algebraic
geometric type the super curgdalso called thepectral curvgremains unaffected by the
flows of the hierarchy. Indeed, it is also true that the dividand the coordinateg 1, )
do not change, so the motion involves only the line buntibnd its local trivialization.
Since our aim is to geometrically interpret Egs. (2.1) and (2.3), which are of differential
type, and the super Krichever map is defined in terms of sections of a super line Bundle
we have to understand how the sections change when we déform

Definition 3.1. LetC be aA-super-curvef an invertible sheaf o6, s a global section of

and(X, x) a pointedA-super-scheme. AR’ -family of invertible sheaves ofiis an invert-

ible sheafl y overC xspeca) X. A deformation of(Z, s) over the pointed super-scheme

(X, x)isatriple(Ly, o, p), Wwhere

1. Ly is anX-family of invertible sheaves of,

2. o is a global section of y, and

3. pis anisomorphismp : £ — *Lx, where: : C < C xspega) & is the embedding
identifying C with C xspe¢4) {x}, suchthat*o = ps.

Two deformationg Ly, o, p) and(Ny, 7, &) of (L, s) over (X, x) are isomorphic if and

only if there exists an isomorphism of sheaves Ly — Ny compatible witho andé&

(6 =*(n) o p) and such that = n(o). The line bundIeCX|CXSpeM){X} ~ L is sometimes

called thecentral fibreof the deformation. Finally, amfinitesimal deformation ofZ, s) is

a deformation over the “one-poinft-super-scheme

& = Spec(A[t’ 8]) ,

(12, te)

wherer is even ana is odd.

Let{U,},es be acovering by open affine sub—super-schemésaofl denote by/;, . ;,
the intersectiomleU i by Ojy ;. the super-commutative ring of sections@g over
Uj,...i.»and byC; . theO;, . ;-module of sections of overU;, ;. Finally, define

.....

yeeey

Oj, .. i ®a O¢, Lj,..jlt el :=Lj, . j ®a O¢,
Uj,..jlt. €] :==SpecO;,,.. jlt. e]) = Uj,... j, Xspeca) €.

,,,,,

Then,{U;[t, €]} jes is an open affine covering df xspe¢s) € and the exact sequence of
sheaves
0 - 0 — Ojlt, €15 — (9;0 — 1,
f B 1+thh+ef,
where fp and f1 are the even and odd componentsfafyields a group isomorphism

Pic(U;[t, €]) ~ Pic(U;) due to the fact that th&;’s are Stein (see [14], 1.3.8). Thus [t
is an infinitesimal deformation of then

Lelujr.e = (Lluplt, €,
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so it is described as the gluing of the last modules by means of a suitable isomorphism
Gix : Liklt, &1 > Lilt, €],
which in turn is given by the transition matrix

8ik 0 0
Gik=| &gk gk O [,
Segk 0 gk

where we express an elemente L[z, €], o; = f; + 8, f; + 8. f; as a column vector
(fj>8:fis 8 [, 8igik € Opk,0. 8egjk € Ojk,1 andgi is the transition function of. The
cocycle condition foiGjk implies that{gjgl(s,gjk + 8:gjk)ljk is a 1-cocyclec; on C with
values inO¢. Clearly, if we change; by a coboundary, we get an isomorphic infinitesimal
deformation of the invertible shef Hence, the set of isomorphism classes of infinitesimal
deformations ofZ is isomorphic toH(C, O¢). If we have a deformatiod y of £ over
(X,x)andv : £ - X is a “tangent vector” toX at x, then the pull-back of x under
ide x v is an infinitesimal deformation of and corresponds by the above argument to a
class f1] € HY(C, O¢). This defines the Kodaira—Spencer mép: 7. X — HL(C, O¢)
of the deformation.

Now we consider the deformatian € H°(C xspega) £, Le) of s € HO(C, £). Let us
write the local expression ef as aboves; = f; + 18, f; + &3. f;, where f; is the local
function representing. Then, the cocycle condition faer to be a global section reads

i Si = 8 i+ gy gk S & Oe S = O fi + & e gik fi (3.1)

The meaning of these two equations is the following (see, e.g., [15] and the Appendix of [5]):
the triple({U;};, {gjil(&gjk +3egjk) ik, (8: fj +0¢ f;};) givesrisetoaclasg e H}(C, <)
of the hyper-cohomology of the complex

C: 0> OeSL—>0

of sheaves o€. The set of isomorphism classes of infinitesimal deformationLof) is
isomorphic tdil(C, ¢), and a corresponding Kodaira—Spencer map can be defined for any
deformation.

Our goal is to show that the similarity between Eg. (3.1) and the second equation in (2.1)
is not only formal, i.e., we can interpret Eq. (3.1) as the differential equation associated
with a Kodaira—Spencer deformation of the spectral super line bundle together with its
meromorphic sections,

g0 fi = O + & 0ugi) i G 0e S = (e + g 06k S 3.2)

To achieve this, we have first of all to construct a suitable fafify of line bundles on a
A-super-curve and then to interpret the Faa di Bruno polynomials as local representatives
of sections ofC y. These two steps will be taken in Sections 4 and 5.
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4. The universal relative positive super divisor

From now on we assume thatis a smooth super curve over. Since the points of the
super universal Grassmannian associated with a solution of the Jacobian super KP hierarchy
belong to the component of indexwe must requir€ to be a generic SKP curve ard
to have degree equal to the genus df.

Definition 4.1 (SKP curve [1]). AA-super-curve& = (C, O¢) is called anSKP curvef
its split structure shea®;” := O¢c ® 4 A/m is of the formO!¥|S, wherem is the maximal
ideal of nilpotent elements of, S is an invertible@éd-module (a“reduced” line bundle) of
degree 0 and- denotes a direct sum of freemodules, with on the left an evenly generated
summand and on the right an odd oneS 1§ OC’ZEd thenC is called agenericSKP curve.
LetC be the dual super curve 6f whoseA-points are the irreducible superdivisor€qkee
Appendix A). Constructing a universal family of line bundlés requires the construction
of the super Picard scheme®fnd the corresponding super Poincaré sheaf. However, we
can avoid this difficult step, since it suffices to produce the universal super di¥i§bof
degreeg. In analogy to the commutative case, the central object we have to consider is the
gth symmetric producngC~ of the dual super curvé, sinceC parameterizes irreducible
positive super divisors ofl. Our discussion will follow closely that of [3], the only novelty
being that we have to work over rather tharC.

Let C8 := C xspeea) - - Xspeca) C be theg-fold fibred product ofC with itself over
SpecA). The symmetric grougt, of degreeg acts onCé by

Y,30: (o — Cs,
(x1, ~--sxg) = (xO'(l)1 "'7-x0'(g))7
and
. a8 ®a8
o OC — OC , @)
fi®A--®a fg — <H j<k (—1)f"(”f"<">> fo - fowo)» '
o(j)>o (k)

where(C is the reduced curve associated with\Ve define thegth symmetric product of
to be the ringed space

ce
SgC = <— (@®Ag)2g) ,
e

whose structure sheaf is the graded sheaf of invarian¥af. Notice that, since is an
even map (i.e., it preserves degrees), the action above is the same as that in Eq. (1) of [3].
The form given above makes the proof of the following proposition quite immediate.

Proposition 4.1. The super spack,C is a supermanifold oveBpecA) of dimensiorg|g.

Proof. Itis well known thatS,C := C#/X, is a smooth scheme, so we have to show that
locally O, ¢ is isomorphic taOs,c ® A[641, ..., 6,]. Obviously A C Og,c. By definition
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there exists an open coverify;}jc; of C such thatO¢(U;) ~ A ®c Oc(U;)[6;]. Let

p . C8 — S,C be the natural projection of ordinary schemes. One has only to prove that
if V is an open affine subscheme $fC such thatO¢. (U) (U = p~1V) is isomorphic

to A ®c (Oc(U)[6])®cs, thenOs,c(V) = Os,c(V) ® Algi, - .., g,] for suitable odd
coordinatesy, ..., ¢,. Now, o € X, acts as the identity on the first factar. in fact we

have

o [ [T ™0 apfr®--® f
j<k

ocAfi®--® )‘gfg)

1_[ (_1)(fo(l)+)‘a(l))(fo(m)+)‘a(m)) )\U(l)f()'(l) R ®
l<m
o(l)>o(m)
o (o) for(g) = l_[ (_1)fa(z))_»o(m)+fa(m))_»a(l)+fa<l>fa(m)

I<m
o(l)>o(m)

% H(—l)fa(f)ka“‘) XM Agfo) @ ® foig)
j<k

= 1_[ (_l)fa(l)xa(m)+.fo(»z)xa(l) H(_l).fa(j)iuk)
I<m j<k
o(l)y>o(m)

X)\l"')\ga(fl®"'®fg)

and since

I1 (=) fowron+fomtan H(_]_)famio(k) = H(_l)fka’
I<m j<k j<k
o(l)>o(m)
wegelo(Ar-- A f1® - Q fg) = A1 A0 (f1® - ® f,). Therefore, it remains only
to apply Theorem 1 of [3]. Iz, 6) are graded local coordinates 6fthen a system of
graded local coordinates faf,C is given by(sz, ..., s, 61, ..., Gg), Where(sy, ..., sg)
are the (even) symmetric functions of = 1® --- ® z ® --- ® 1 (with z in the jth
position), 1< j < g and(sy, ..., ¢,) are the odd symmetric functions defined oy:=
Zf=19k§§-li)11 whereg, =1 - QIR ---®1 and§](.k) is the jth symmetric function of

TLs s Th—1s Thtls - -0 Lgo _ _ o g
To exploit this construction, we give the following definition.

Definition 4.2. Let X = (X, Oy) be a super scheme over Spag. A positive relative
super divisor of degreg of C xspega) X — X is a closed sub—super-scherfeof
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C xspega) & of codimension [0, defined by a homogeneous locally principal idgal
of (’)chpeM)X, such thatOz is a locally free® y-module of rankg|0 and its reduction

(modulo nilpotentsy is a positive relative divisor of degrgeof C x X — X.
By definition, thenZ is locally defined by an equation of type

f=28—(a1+0a)f 1+ + (=D*(ag + ag) =0,

where f is the local generator of and thea;’s (respectively, the;’s) are even (respec-
tively, odd) local functions otkx’. Our aim is to show that the symmetric prodlig;(,7 is the
parameter space for the universal relative super divisor of dggta&’, of C. The univer-
sal relative super divisor of degree 1 is simply the sub—super-sciétef C X SpecA) C
locally defined by the equation

2@41-1®472—-0®4p=0,

which we will write more compactly as— 7 — 6 = 0, where(z, ) are local coordinates
of C and(z, p) are the “dual” coordinates given in Eq. (A.2). Consider now the natural
projections

T CXSpeO;A)ég — CXSpeo;A)é’
(X, X1, ..., %) (x, xj),

and defined ; := ;7 1(A®M), A®) := A1 +--- + A,. Since the local equation af®) is

8
[[e—2—65) =2 — (1 4+ 6502+ - + (=¥ (sg +65¢) = O,
j=1

where thes;’s and theg,'s are the symmetric functions of tig’s andp,’s we introduced
at the end of the proof of Proposition 4.1, the next lemma holds true.

Lemma 4.2. There exists a unique positive relative super divigdf’ of degreeg of

C X SpecA) SgC~ — Sgé such thab'[*(A(g)) = A® wherer : C X Spec ) Cs - ¢ X SpegA)

Sg(f is the natural projection

The most important result we need is Theorem 6 of [3], whose proof extends to the present

situation.

Theorem4.3. The pair(Sgé, A®) represents the functor of relative positive super divisors
of degree g of, i.e., the natural map

R: Hom(X,S,C) — Div%(C xspeca) X),
f > (id x f)*A®),

is a functorial isomorphism for every-super-schem#&’.
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5. The geometric super Faa di Bruno polynomials

The constructions of Section 4 allow us to define a canonical family of super line bundles
together with an even section. For simplicity, we celt= Sg(f and we also assume théat
is a generic SKP super curve of geruhen,Ly := O¢xgyeqn ¥ (A®)) is anX-family of
super line bundles ofi andA(® defines a sectioa of L. If we let £ be any non-special
super line bundle og (i.e., such that the reduced invertible sh&4t is non-special on
C) of degreeg and we calls, the unique (up to multiplication by a complex number)
section that generates the even pa®i8{C, £), then the divisots,) can be thought of as a
Spec A)-family of positive relative super divisors of degrgand the universality property
of A® (Theorem 4.3) gives a unique mgp : Spe¢A) — X, i.e., aA-pointx of X, such
that(sz) = (id x f£)*A®, Inturn, this induces an isomorphism : £ — (id x fr)*Lx
such thatid x fz)*o = pss,, SO we can interpret the tripleX’, Ly, o) as a deformation
of (L, sp) for any non-special super line bundfeon C. Finally, if we put graded super
coordinates = (r1,...,12,) ON X (r; = j mod 2) then the cocycle conditions (3.1) for
the sectionr as a deformation af, := olcx(xy)), fOr anyto, become the differential
equations

gjilall fi=0ft+ (gjilatlgjk)fk,

which are manifestly of the form of (2.1). To accomplish our goal of describing the algebraic
geometric super Faa di Bruno polynomials, we have therefore only to choose a suitable open
covering ofC xspega) X and to appropriately select two coordinatgsandzy; 1 and to

call themx andg, respectively.

As before, select a non-special super line burtief degreeg onC. Let po, € C be a
reduced point o€ such that it is not Weierstrass férand the reduced secti@ﬁj does not
vanish atp.,. Let Up C C be an open neighbourhood p§, where we can define graded
coordinategz, ) for C centred afp (i.€.,z2(pso) = 0) and letlU; := C — {pso}. Then,
{Uo, U1} is a Stein open covering df. Sinceszj does not vanish gp,, the sectiorns
gives a local trivializatiom of £ on Uy (suitably restricted). Then, the quintuglé, D =
(@D, (z,0), L, n) defines through the super Krichever map a point of §Giinally, let
V be a Stein open neighbourhood ®f) € X where the coordinatesare defined. The
open subsetslp = Up xspecs) V andify := Uy xspe¢a) V define a Stein covering of
C xspega) V over which we can trivializ&€y, 1= Ly e xspeea) V- RestrictingV if necessary,
we can assume thatgives a local trivialization ofZy, overif.

Now, we move to the analytic category instead of the algebraic on&/Let 7*O¢ (gD),
wherer is now the projection of xspe¢a) V to C, and letu be the pull back byr of the
section ofO¢(gD) which generates the even part of its module of global sections. Then,
gives alocal trivialization o overl/;. SinceLy, @ N~ has relative degree O it follows that
restricting agairV if necessary, it has a local analytic trivializatioroveri/; andr = v
gives a trivialization ofCy, overUs.

Summarizing, we have a trivializatiqe, t) of £y, over(Up, U1), with respect to which
o is represented by the couple of functiaifs = 1, f1) and the transition function afy,
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is g10 = f1/fo. Let us defined® := 3, loggio. Then, these meromorphic functions on
Uy satisfy Eq. (2.4) and are therefore our candidates for the super currents of the hierarchy.
Observe that it is possible to choose the coordingtes such a way that (multi-
plying t by the exponential of a suitable meromorphic function whose poles are only
overz~1(ps)) H™ has the correct asymptotic behaviour (2.2) (here our coordiniate
the inverse of the appearing there). Notice also that®’ luorus, rEPresents the class of
HicC X speca) V, OCXSpeQA)V) corresponding to the deformation Gfalongz. Since the
asymptotic behaviour off D is 6 + O(z) it follows that the first time; does not deform
L at all. The super Jacobian Jég of C has dimensiorg|g — 1, while Sgé has dimension
glg and maps surjectively to FieC) ~ Jad(C), hence there is an odd directionlwhich
corresponds to trivial deformations 6f i.e., there exists indeed a coordinate like
In Section 2.3 of [6], we have shown that the Faa di Bruno generator is computed by the
formulai := H® |1, + 9H?|,+,. The cocycle condition (3.1) can be interpreted also
as saying thatd,, fo + H* fo. 9, f1) is a section ofZy (cor* D) with pole of orderk at
7*D. Thus, the super Faa di Bruno recurrence relation (2.1) corresponds to deformation
along the non-integrable vector fielland the super Faa di Bruno polynomiaf$ are the
local representatives diy of the meromorphic sections® of £, obtained by iterative
deformation ot @ := & alongD. The form ofi implies also that the ®'s form a basis
of HO(C X speea) V, Ly (cor* D)) over Oy,. We can restate the above discussion in the
following proposition.

Proposition 5.1. The super Faa di Bruno recurrence relation is the cocycle condition for the
hypercohomology group describing the deformations of the dynamical super line bundle
L on the spectral curv€ and of its meromorphic sections which give rise to the super

Krichever map .
We end by remarking that Eg. (2.3) is an obvious consequence of the definithoaraf

)
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Appendix A. Super curves

In this appendix we recall some facts concerning super curves, referring to [7] for more
details on supergeometry.

Let A be a Grassmann algebra ov&rAn algebraic super curve ovet, also called a
A-super-curvdor brevity, is a proper irreducible superschefne> SpegA) over SpecA)
with fibre dimension [l and whose underlying reduced scheme is a proper irreducible
algebraic curve oveE. Throughout this paper we assui¢éo be a supermanifold, so it is
given by a painC, O¢), whereC is a topological space arde = O¢ o ® Oc¢ 1 is a sheaf
of super-commutativei-algebras orC such that
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1. (C,0O¢ = (’)(r;d = Oc¢/Je) is asmooth irreducible proper algebraic curve dvgwhere
Jc is the ideal shea®c 1 + OF ;,
2. there exists an open coverifig;};c; of C and odd element; € O¢(U;) such that

Oc(Uj) =~ Oc(Uj) ®c Alb;].

A A-pointofCisamap Spext) — C whose composition with the projectiGn— SpecA)
is the identity morphism.

An invertible sheafZ onC is a locally free evenly generat€}--module of rank 10; it is
the sheaf of sections of a super line bundle that, abusing notations, we still &d can
find a suitable open coverif@/;} ;s of C over the elements of which is trivial. Then the
super line bundle is completely described in terms of its (even invertible) transition functions
gk € TWU; NU, Oé,o) satisfying the usual cocycle conditions. The set of isomorphism
classes of super line bundles @is thereforeH 1(C, Oé,o) and tensor product of invertible
sheaves (or, equivalently, multiplication @go) gives it a group structure under which it
is called the Picard group Ri€) of C.

Another way to describe an invertible sheaf is by means of super (Cartier) divisors. A
super divisor orC is a collectionD := {(U;, f;)};es of even non-zero rational functions
f; defined, up to even invertible regular functions, on the open subseifa covering of
C, and agreeing in the intersectiotig N Uy up to an element (ﬁ)g’O(Uj NU),i.e.,Disa
section oﬂ?atg’o/OCX,O, whereRag is the sheaf of rational functions @¢h With the super
divisor D one associates the invertible subsh®af D) c Rat whose local sections over
U; span the modulqj‘loc(Uj) and the transition functions of the corresponding super

line bundle argjx = f; f,jl. We have the exact sequence
0— (’)é’o — Rafaio — Ralé’o/(’)é’o -0

and a super divisab is called principal if it is the image of a global non-zero even rational
function f, in which case we writedD = (f). Of course, the invertible sheaf associated
with a principal divisor is trivial and vice versd is called effective (or positive) if; is
regular for everyj, and irreducible iff; = z; — Z; — 6;6;, wherez;, §; € A.

A useful concept associated with irreducible super divisors is the dual super&ofve
C, which we briefly review (see [1,2] for more details). let= (C, O¢) be theN = 2
super curve whose reduced algebraic curve is againd whose structure sheaf is the only
super conformal extension 8er: by O¢

0— OC — OQ — Berc — 0. (A.l)

HereBer is the dualizing sheaf @, whose transition functiongy are the Berezinians of
the (super) Jacobian matrices of the coordinate transformations betlyesmd Uy, and
the super conformal property means that the local farm= dz; — d6,p; is globally
defined up to a scalar factor, wheg, 6;, p;) are graded local coordinates Gradapted
toC (i.e., (z;, 0;) are coordinates o6l). The kernel ofw; is generated by; := d,, and
ﬁj i= dp; + p;d;; and one can easily convince himself t@3t represents locally the map
Oc¢ — Berg, thus the structure sheéf; of C is the kernel ofD.
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Introducing the new coordinates

Zj =2zZj— Gjpj, 9{/ = 9], ,5.,' =pj (A.2)
onC, the two operators above becole = 9, +§j 9z, andf)j = aé]_, respectively, so the

kernel of D; consists of functions of; and5;. One shows that this makes sense globally
obtaining therefore a new exact sequence

0— Op — 0gBQ -0,

whereQ; is the structure sheaf of alA-super-curve which is called the dual super curve

of C, moreoverQ =~ Ber; andé ~ C, which explains the terminology. The interesting fact
is that theA-points ofC correspond to the irreducible divisors@f
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